ACKNOWLEDGEMENT

Wieland-Werke AG wishes to express its appreciation to Wolverine Tube Inc, Dr. K. J. Bell and Dr. A. C. Mueller for authorship of this important manual. Being now responsible owner of this, Wieland-Werke AG will continue to serve generations to come with this benchmark for heat transfer knowledge.

Acknowledgement is made in the text for material which has been used from other sources.

PREFACE

For many years now, the Heat Transfer Data Book II has been a valuable reference in all work and research in heat transfer engineering. The manual provides information and discussions on basic heat transfer, sensible heat transfer, condensing heat transfer, Trufin tubes in air-cool heat exchangers, and Trufin tubes in boiling heat transfer.

Publishing support

PP PUBLICICO

www.pp-publico.de
ISBN-10 3-934736-36-X
ISBN-13 978-3-934736-36-8
EAN 9783934736368

Copyright © 2016 by Wieland-Werke AG, All rights reserved

The contents of this manual have been compiled with the utmost attention and care. However, Wieland-Werke AG and all publishing companies cannot assume any liability for their completeness, correctness, timeliness or reliability. Typing or printing errors cannot be completely excluded. The reader is advised to consult with experts for advice.
TABLE OF CONTENTS

CHAPTER 1 – BASIC HEAT TRANSFER

1.1 Basic Mechanisms of Heat Transfer ... 7
1.1.1 Conduction ... 7
1.1.2 Single Phase Convection ... 9
1.1.3 Two Phase (Liquid Gas/Vapor) Flow ... 12
1.1.4 Condensation ... 16
1.1.5 Vaporization ... 18
1.1.6 Radiation ... 21

1.2 Basic Heat Exchanger Equations ... 22
1.2.1 The Overall Heat Transfer Coefficient .. 22
1.2.2 The Design Integral .. 24

1.3 The Mean Temperature Difference .. 26
1.3.1 The Logarithmic Mean Temperature Difference 26
1.3.2 Configuration Correction Factors on the LMTD 28

1.4 Construction of Shell and Tube Heat Exchangers 33
1.4.1 Why a Shell and Tube Heat Exchanger? .. 33
1.4.2 Basic Components of Shell and Tube Heat Exchangers 33
1.4.3 Provisions for Thermal Stress ... 36
1.4.4 Mechanical Stresses ... 38
1.4.5 The Vibration Problem ... 39
1.4.6 Erosion .. 39
1.4.7 Cost of Shell and Tube Heat Exchangers .. 40
1.4.8 Allocation of Streams in a Shell and Tube Exchanger 40

1.5 Application of Extended Surfaces to Heat Exchangers 42
1.5.1 The Concept of the Controlling Resistance ... 42
1.5.2 Types of Extended Surface ... 42
1.5.3 Fin Efficiencies and Related Concepts .. 43
1.5.4 The Fin Resistance Method .. 45
1.5.5 Some Applications of Finned Tubes .. 47

1.6 Fouling in Heat Exchangers ... 48
1.6.1 Typical Fouling Resistances .. 48
1.6.2 Types of Fouling ... 48
1.6.3 Effect of Fouling on Heat Transfer .. 49
1.6.4 Materials Selection for Fouling Services .. 49
1.6.5 Removal of Fouling .. 50
CHAPTER 2 – SENSIBLE HEAT TRANSFER

2.1 Heat Exchangers with Low and Medium Finned Trufin ... 59
 2.1.1 Areas of Application .. 59
 2.1.2 Description of Low and Medium Finned Trufin .. 60

2.2 Basic Equations for Heat Exchanger Design .. 61
 2.2.1 The Basic Design Equation and Overall Heat Transfer Coefficient 61
 2.2.2 Fin Efficiency and Fin Resistance ... 62
 2.2.3 Mean Temperature Difference, F Factors ... 63

2.3 Heat Transfer and Pressure Drop During Flow Across Banks of Trufin Tubes 68
 2.3.1 Heat Transfer In Trufin Tube Banks .. 68
 2.3.2 Pressure Drop During Flow Across Banks of Low Finned Trufin Tubes 70
 2.3.3 Effect of Fouling on Trufin ... 71

2.4 Heat Transfer and Pressure Drop Inside Tubes .. 72
 2.4.1 Heat Transfer And Pressure Drop In Single Phase Flow Inside Round Tubes 72
 2.4.2 Heat Transfer in Two Phase Flow Inside Tubes ... 76

2.5 Preliminary Design of Shell and Tube Heat Exchangers ... 78
 2.5.1 Basic Principles of Design ... 78
 2.5.2 Preliminary Design Decisions .. 79
 2.5.3 Procedure for Approximate Size Estimation .. 81

2.6 Delaware Method for Shell Side Rating of Shell and Tube Heat Exchangers 87
 2.6.1 Introduction ... 87
 2.6.2 Calculation of Shell Side Geometrical Parameters .. 88
 2.6.3 Shell Side Heat Transfer Coefficient Calculation .. 97
 2.6.4 Shell Side Pressure Drop Calculation .. 98

2.7 Examples of Design Problems for Low and Medium Finned Trufin in Shell and Tube Heat Exchangers ... 106
 2.7.1 Design Of A Compressor Aftercooler ... 106
 2.7.2 Design of A Gas Oil to Crude Heat Recovery Exchanger ... 113

CHAPTER 3 – CONDENSING HEAT TRANSFER

3.1 Trufin Tubes in Condensing Heat Transfer .. 131
 3.1.1 Modes of Condensation .. 131
 3.1.2 Areas of Application ... 131
 3.1.3 Types of Tubes Available ... 132

3.2 Condensation of Vapor Inside High-Finned Trufin Tubes ... 133
 3.2.1 Vapor Liquid Two Phase Flow ... 133
 3.2.2 Condensation Heat Transfer .. 142
 3.2.3 Mean Temperature Difference for In-Tube Condensation ... 149
3.3 Condensation of Vapor Outside Low and Medium Finned Trufin Tubes

- 3.3.1 Shell and Tube Heat Exchangers for Condensing Applications .. 152
- 3.3.2 The Basic Design Equations .. 158
- 3.3.3 Mean Temperature Difference ... 158
- 3.3.4 Condensation of a Superheated Vapor ... 159
- 3.3.5 Condensation with Integral Subcooling On the Shellside .. 160
- 3.3.6 Filmwise Condensation on Plain and Trufin Tubes ... 163
- 3.3.7 Filmwise Condensation on Tube Banks ... 165
- 3.3.8 Pressure Drop during Shell Side Condensation ... 166
- 3.4.1 Condenser Design for a Pure Component: Example Problem 167
- 3.4.2 Condenser Design for a Multi-component Mixture: Example Problem 175

CHAPTER 4 – TRUFIN TUBES IN AIR-COOL HEAT EXCHANGERS

- 4.1 Heat Exchangers with High Finned Trufin Tubes .. 189
- 4.1.1 Areas of Application .. 189
- 4.1.2 High Finned Trufin ... 190
- 4.1.3 Description of Equipment .. 191

- 4.2 Heat Transfer with High Finned Trufin Tubes .. 195
- 4.2.1 Fin Temperature Distribution and Fin Efficiency ... 195
- 4.2.2 Effect of Fouling on High Finned Trufin ... 197
- 4.2.3 Contact Resistance in Bimetallic Tubes .. 197

- 4.3 Heat Transfer and Pressure Drop in High Finned Trufin Tube Banks 199
- 4.3.1 Heat Transfer Coefficients in Crossflow .. 199
- 4.3.2 Mean Temperature Difference in Crossflow ... 201
- 4.3.3 Pressure Drop in Crossflow ... 203
- 4.3.4 Other Air-Side Pressure Effects .. 204

- 4.4 Preliminary Design Procedures ... 206
- 4.4.1 Principles of the Design Process .. 206
- 4.4.2 Selection of Preliminary Design Parameters ... 206
- 4.4.3 Fundamental Limitations Controlling Air Cooled Heat Exchanger Design 208

- 4.5 Final Design .. 214

CHAPTER 5 – TRUFIN TUBES IN BOILING HEAT TRANSFER

- 5.1 Trufin in Boiling Heat Transfer ... 219
- 5.1.1 Pool Boiling Curve .. 219
- 5.1.2 Nucleation .. 220
- 5.1.3 Nucleate Boiling Curve ... 222
- 5.1.4 Maximum or Critical Heat Flux .. 222
- 5.1.5 Film Boiling .. 223
The basic mechanisms of heat transfer are generally considered to be conduction, convection, boiling, condensation, and radiation. Of these, radiation is usually significant only at temperatures higher than those ordinarily encountered in tubular process heat transfer equipment; therefore, radiation will not be considered in any great detail in this Manual. All of the others play a vital role in equipment design and will frequently appear in the discussion. In this section, the emphasis will be upon a qualitative description of the processes and a few very basic equations.

1.1.1 Conduction

Mechanism

Conduction in a metallic solid is largely due to the random movement of electrons through the metal. The electrons in the hot part of the solid have a higher kinetic energy than those in the cold part and give up some of this kinetic energy to the cold atoms, thus resulting in a transfer of heat from the hot surface to the cold. Since the free electrons are also responsible for the conduction of an electrical current through a metal, there is a qualitative similarity between the ability of a metal to conduct heat and to conduct electricity. In addition, some heat is transferred by interatomic vibrations.

Fourier Equation

The details of conduction are quite complicated but for engineering purposes may be handled by a simple equation, usually called Fourier’s equation. For the steady flow of heat across a plane wall (Fig. 1.1) with the surfaces at temperatures of \(T_1 \) and \(T_2 \) where \(T_1 \) is greater than \(T_2 \) the heat flow \(Q \) per unit area of surface \(A \) (the heat flux) is:

\[
\frac{Q}{A} = q = k \left(\frac{T_1 - T_2}{X_1 - X_2} \right) = k \frac{\Delta T}{\Delta X}
\]

The quantity \(k \) is called the thermal conductivity and is an experimentally measured value for any material. Eq. (1.1) can be written in a more general form if the temperature gradient term is written as a differential:

\[
\frac{Q}{A} = -k \frac{dT}{dx}
\]
The negative sign in the equation is introduced to account for the fact that heat is conducted from a high temperature to a low temperature, so that \(\frac{dT}{dx}\) inherently negative; therefore the double negative indicates a positive flow of heat in the direction of decreasing temperature.

Conduction Through a Tube Wall

The main advantage of Eq. (1.2) is that it can be integrated for those cases in which the cross sectional area for heat transfer changes along the conduction path. A section of tube wall is shown in Fig. 1.2. \(Q\) is the total heat conducted through the tube wall per unit time. At the radial position \(r\) in the tube wall \((r_i \leq r \leq r_o)\), the area for heat transfer for a tube of length \(L\) is \(A = 2rL\). Putting these into Eq. (1.2) gives

\[
\frac{Q}{2\pi rL} = -k \frac{dT}{dx}
\]

which may be integrated to

\[
Q = \frac{2\pi L k(T_i - T_o)}{\ln(r_o/r_i)}
\]

If \(T_i < T_o\), \(Q\) comes out negative; this just means that the heat flow is inward, reversed from the sense in which we took it. For thin walled tubes, the ratio of the outer to the inner radius is close to unity, and we can use the simpler equation,

\[
Q = \frac{2\pi r_o L k(T_i - T_o)}{r_o - r_i}
\]

with very small error.

Conduction Through a Bimetallic Wall

Sometimes, for reasons of corrosion, strength and/or economy, a tube is actually constructed out of two tightly fitting concentric cylinders of different metals as shown in Fig. 1.3. Note that \(r'\) is the outside radius of the inner tube and the inside radius of the outer tube, and \(T'\) is the corresponding temperature. From Eq. 1.4 we may write directly for the inner tube:

\[
Q = \frac{2\pi L k_i(T_i - T')}{\ln(r'/r_i)}
\]
and for the outer tube:

\[Q = \frac{2\pi L k_o (T' - T_o)}{\ln(r_o/r')} \]

Since the same amount of heat must flow through both tubes, the Q's are equal. Then the equations can be combined to eliminate the unknown temperature T', and Q is given by:

\[Q = \frac{T_i - T_o}{\ln(r'/r_i) + \ln(r_o/r')} - \frac{2\pi L k_i}{2\pi L k_o} \]

Contact Resistance

In the previous section, the assumption was made that the outer surface of the inner cylinder and the inner surface of the outer cylinder were at the same temperature, implying that there was no resistance to heat transfer between the two. This assumption is essentially correct if the two surfaces are metallurgically bonded to one another, as can be achieved when one material is fused to the other or when they are bonded by a detonation wave. The assumption can be seriously in error if the two surfaces are merely in close physical contact, even at the very high pressures that can be exerted by shrink-fitting.

Practical metal surfaces generally have roughnesses ranging from 10 to 180 microinches, the degree and the form of the roughness depending upon the metal and the method of forming the surface. When two such surfaces are placed in contact, the “hills” are touching while the “valleys” are filled with the ambient atmosphere, usually air. Because of the low thermal conductivity of gases, practically all of the heat is conducted through the points in metal-to-metal contact. At low pressures, this will be only a small portion of the surface perhaps less than one percent and the resulting constriction of the heat flow lines can lead to an interface resistance several times greater than in the metal slabs themselves.

At higher contact pressures between the surfaces, the hills are flattened to give a greater surface area in contact in order to sustain the load, and the interface resistance decreases. Various methods are used to ensure good thermal contact including co-extrusions and shrink-fitting, but repeated thermal cycling in the normal operation of process equipment, together with creep, can cause long-term serious loss of efficiency.

Unfortunately it is almost impossible to predict contact resistance in process equipment applications. Here, as in all process equipment design, the engineer must assess the consequences of being wrong and the possible alternatives.

1.1.2 SINGLE PHASE CONVECTION

Fluid Motion Near a Surface

Convective heat transfer is closely connected to the mechanism of fluid flow near a surface, so the first matter of importance is to describe this flow.
2.1 HEAT EXCHANGERS WITH LOW AND MEDIUM FINNED TRUFIN

2.1.1 AREAS OF APPLICATION

In Chapter 1, we found that it is usually advantageous to use Trufin Tubes when one of the film heat transfer coefficients is significantly smaller than the other. The lower coefficient tends to dominate or control the magnitude of \(U \), the overall heat transfer coefficient, resulting in a large required heat transfer area and a correspondingly large heat exchanger. We also showed that one can reduce the total length of tubing required and therefore the size of the heat exchanger if finned surface is used in contact with the fluid having the low film heat transfer coefficient.

An approximately optimum design can be obtained under these conditions if the resistances of the two sensible heat transfer processes are approximately equal. This requirement may be stated as

\[
\frac{1}{h_i A_i} \approx \frac{1}{h_o A_o}
\]

or

\[
\frac{A_o}{A_i} \approx \frac{h_i}{h_o}
\]

A large number of applications result in values of \((h_i/h_o)\) ranging from 2 to 10, and it is under these conditions that types S/T and W/H Trufin are most applicable, for these tubes have \((A_o/A_i)\) values ranging from just under 3 up to over 6.

This section is devoted to applications where single-phase heat transfer is taking place on the finned surface of the tubes. Typical applications include (but are not limited to) the following:

1. Cooling of liquids and gaseous product with cooling water. It is frequently necessary to cool gas or liquid products for storage, using cooling tower or naturally available water. Unless the product is very corrosive, the water will usually be in the tubes. The water coefficient will usually be about 1000 Btu/hr ft² °F, whereas a typical shell-side coefficient will be from 50 for a moderate pressure gas to 300 to 350 for a non-aqueous, low-viscosity liquid. The use of high-finned tube (Type H/F) might be considered for the moderate pressure gas, but construction requirements will usually indicate a shell and tube exchanger with medium-finned type W/H or type S/T Trufin. For the liquids, one of the low-finned type S/T Trufin tubes is usually indicated.

2. Cooling of compressed gases (either between the stages or when the compression is complete.) These gas coefficients can vary from 25 to 100; the values are lower than in the previous case because pressure drops are often limited to low velocities through the cooler. Again, medium finned type S/T or W/H Trufin is probably indicated because of its more favorable area ratios, but low finned tubing is also often used.

3. Feed-effluent exchangers and similar arrangements for heat recovery. There is increasingly a need to recover heat by using a hot effluent stream from a reactor or a distillation column to heat an incoming stream. One of these streams usually has intrinsically a higher heat transfer coefficient (for example, a hot liquid effluent stream) than the other, and exchanger design advantages often result if Trufin is used.

The above are only typical applications for S/T and W/H Trufin. As a general statement, Trufin should be used wherever the resulting exchanger is less expensive or more operationally convenient than the plain tube exchanger required for the same service. Often, only a comparison of the final designs of both the finned and the plain tube exchangers will reveal the advantages of the Trufin tube design.
2.1.2 DESCRIPTION OF LOW AND MEDIUM FINNED TRUFIN

1. **Type S/T Trufin Low-Finned Tube.** An example of Type S/T Trufin tube is shown in Fig. 2.1. The tube shown has 19 fins per in., but similar tubes are produced with 16, 26, 32, and 40 fins per in. The fin height for these tubes is approximately 1/16 inch, and these are the tubes commonly referred to as low-finned tubes. The 40-fin product is also supplied with a .035 in. fin height. The 32-fin product has a fin height of .032 and is generally supplied in titanium.

2. **Type S/T Trufin Medium-Finn Tube.** Type S/T Trufin medium finned tube is characterized by having 11 fins per in. and fins 1/8 in. high, resulting in outside to inside surface area ratios of about 5. A typical tube is shown in Fig. 2.2. These tubes are supplied either with belled ends suitable for rolling into tube sheets or plain ends up to 3 in. in length.

3. **Type S/T Turbo-Chil Finned Tube.** Type S/T Turbo-Chil finned tube is illustrated in Fig. 2.3. This tube configuration combines the 19, 26, or 40 fins per in. external surface enhancement of conventional S/T Trufin with the enhancement of the inside heat transfer coefficient afforded by the spiral ridges. The turbulence level of the fluid in the tube is increased by the spiral ridges. Because Turbo-Chil enhances both the inside and outside heat transfer, it is mainly useful in applications where the heat transfer coefficients on either side of a plain tube would be comparable in magnitude. Turbo-Chil then allows a sharply increased heat transfer rate per unit length of tube and can considerably reduce the volume of heat exchanger required for a particular service. Special correlations are required for the in tube heat transfer and pressure drop for Turbo-Chil.
2.2 BASIC EQUATIONS FOR HEAT EXCHANGER DESIGN

2.2.1 THE BASIC DESIGN EQUATION AND OVERALL HEAT TRANSFER COEFFICIENT

The basic heat exchanger equations applicable to shell and tube exchangers were developed in Chapter 1. Here, we will cite only those that are immediately useful for design in shell and tube heat exchangers with sensible heat transfer on the shell-side. Specifically, in this case, we will limit ourselves to the case when the overall heat transfer coefficient is constant and the other assumptions of the mean temperature difference concept apply. Then the basic design equation becomes:

\[
Q_T = U^* A^* F (\text{LMTD})
\]

where \(Q_T\) is the total heat load to be transferred, \(U^*\) is the overall heat transfer coefficient referred to the area \(A^*\), \(A^*\) is any convenient heat transfer area, LMTD is the logarithmic mean temperature difference for the purely countercurrent flow configuration, and \(F\) is the configuration correction factor for multiple tube-side and/or shell-side passes. Charts of \(F\) for the common shell and tube exchanger configuration are discussed later.

\(U^*\) is most commonly referred to \(A_o\), the total outside tube heat transfer area, including fins, in which case it is written as \(U_o\) and is related to the individual film coefficients, wall resistance, etc. by

\[
U_o = \frac{1}{h_o + R_{fo} + R_{f}} + \frac{\Delta x_{w} A_m}{k_w A_m} + \frac{\Delta x_{w} A_i}{k_{w} A_i} + \frac{1}{h_i A_i}
\]

where \(h_o\) and \(h_i\) are the outside and inside film heat transfer coefficients, respectively, \(R_{fo}\) and \(R_f\) are the outside and inside fouling resistances, \(\Delta x_{w}\) and \(K_w\) are the wall thickness (in the finned section) and wall thermal conductivity, and \(R_{f}\) is the resistance to heat transfer due to the presence of the fin. Since all of the low and medium-finned tubes manufactured by Wieland Thermal Solutions are integral (i.e., tube and fins are all one piece of metal), there is no need to include a contact resistance term.

Suitable correlations for \(h_o\) and \(h_i\) will be developed later in this section. The fouling resistances are ordinarily specified by the customer based upon experience with the streams in question, but typical values may be found in Chapter 1, Table 1.2.

The mean wall heat transfer area \(A_m\) is given with sufficient precision as

\[
A_m = \frac{\pi L}{2} (d_i + d_f)
\]

If it is preferred to use an overall heat transfer coefficient based upon the inside heat transfer area \(A_i\), the following relationship holds:

\[
U_o A_e = U_i A_i
\]

It is of the greatest importance to always identify the reference area when quoting the value of a film or overall heat transfer coefficient.